C4 Differentiation

1. June 2010 qu. 2

Given that $y=\frac{\cos x}{1-\sin x}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$, simplifying your answer.
2. June 2010 qu. 5

Find the coordinates of the two stationary points on the curve with equation

$$
\begin{equation*}
x^{2}+4 x y+2 y^{2}+18=0 \tag{7}
\end{equation*}
$$

3. June 2010 qu. 7

The parametric equations of a curve are $x=\frac{t+2}{t+1}, y=\frac{2}{t+3}$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}>0$.
(ii) Find the cartesian equation of the curve, giving your answer in a form not involving fractions.
4. Jan 2010 qu. 6

A curve has parametric equations $\quad x=9 t-\ln (9 t), \quad y=t^{3}-\ln \left(t^{3}\right)$.
Show that there is only one value of t for which $\frac{\mathrm{d} y}{\mathrm{~d} x}=3$ and state that value.
5. Jan 2010 qu. 7

Find the equation of the normal to the curve $x^{3}+2 x^{2} y=y^{3}+15$ at the point $(2,1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
6. Jan 2010 qu. 8
(i) State the derivative of $\mathrm{e}^{\cos x}$.
(ii) Hence use integration by parts to find the exact value of $\int_{0}^{\frac{1}{2} \pi} \cos x \sin x \mathrm{e}^{\cos x} \mathrm{~d} x$.
7. June 2009 qu. 4
(i) Differentiate $\mathrm{e}^{x}(\sin 2 x-2 \cos 2 x)$, simplifying your answer.
(ii) Hence find the exact value of $\int_{0}^{\frac{1}{4} \pi} \mathrm{e}^{x} \sin 2 x \mathrm{~d} x$.
8. June 2009 qu. 5

A curve has parametric equations $\quad x=2 t+t^{2}, \quad y=2 t^{2}+t^{3}$.
(i) Express $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t and find the gradient of the curve at the point (3, -9).
(ii) By considering $\frac{y}{x}$, find a cartesian equation of the curve, giving your answer in a form not involving fractions.
9. June 2009 qu. 8
(i) Given that $14 x^{2}-7 x y+y^{2}=2$, show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{28 x-7 y}{7 x-2 y}$.
(ii) The points L and M on the curve $14 x^{2}-7 x y+y^{2}=2$ each have x-coordinate 1 . The tangents to the curve at L and M meet at N. Find the coordinates of N.
10. Jan 2009 qu. 6

A curve has parametric equations

$$
x=t^{2}-6 t+4, \quad y=t-3
$$

Find
(i) the coordinates of the point where the curve meets the x-axis,
(ii) the equation of the curve in cartesian form, giving your answer in a simple form without brackets,
(iii) the equation of the tangent to the curve at the point where $t=2$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
11. Jan 2009 qu. 8

The equation of a curve is $x^{3}+y^{3}=6 x y$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
(ii) Show that the point $\left(2^{\frac{4}{3}}, 2^{\frac{5}{3}}\right)$ lies on the curve and that $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$ at this point.
(iii) The point (a, a), where $a>0$, lies on the curve. Find the value of a and the gradient of the curve at this point.
12. June 2008 qu. 3

The equation of a curve is $x^{2} y-x y^{2}=2$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-2 x y}{x^{2}-2 x y}$.
(ii) (a) Show that, if $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$, then $y=2 x$.
(b) Hence find the coordinates of the point on the curve where the tangent is parallel to the x-axis.
13. June 2008 qu. 9

The parametric equations of a curve are $x=2 \theta+\sin 2 \theta, y=4 \sin \theta$, and part of its graph is shown below.

(i) Find the value of θ at A and the value of θ at B.
(ii) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\sec \theta$.
(iii) At the point C on the curve, the gradient is 2 . Find the coordinates of C, giving your answer in an exact form.
14. Jan 2008 qu. 4

Find the equation of the normal to the curve $\quad x^{3}+4 x^{2} y+y^{3}=6$
at the point $(1,1)$, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
15. Jan 2008 qu. 9

The parametric equations of a curve are $x=t^{3}, y=t^{2}$.
(i) Show that the equation of the tangent at the point P where $t=p$ is $\quad 3 p y-2 x=p^{3}$.
(ii) Given that this tangent passes through the point $(-10,7)$, find the coordinates of each of the three possible positions of P.
16. June 2007 qu. 6

The equation of a curve is $x^{2}+3 x y+4 y^{2}=58$. Find the equation of the normal at the point $(2,3)$ on the curve, giving your answer in the form $a x+b y+c=0$, where a, b and c are integers.
17. Jan 2007 qu. 6

The equation of a curve is $2 x^{2}+x y+y^{2}=14$. Show that there are two stationary points on the curve and find their coordinates.
18. June 2006 qu. 1

Find the gradient of the curve $4 x^{2}+2 x y+y^{2}=12$ at the point $(1,2)$.
19. June 2006 qu. 9

A curve is given parametrically by the equations $\quad x=4 \cos t, \quad y=3 \sin t$, where $0 \leq t \leq \frac{1}{2} \pi$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t.
(ii) Show that the equation of the tangent at the point P, where $t=p$, is $3 x \cos p+4 y \sin p=12$.
(iii) The tangent at P meets the x-axis at R and the y-axis at $S . O$ is the origin. Show that the area of triangle $O R S$ is $\frac{12}{\sin 2 p}$.
(iv) Write down the least possible value of the area of triangle $O R S$, and give the corresponding value of p.
20. Jan 2006 qu. 2

Given that $\sin y=x y+x^{2}$, find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of x and y.
21. Jan 2006 qu. 5

A curve is given parametrically by the equations $x=t^{2}, y=2 t$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t, giving your answer in its simplest form.
(ii) Show that the equation of the tangent to the curve at $\left(p^{2}, 2 p\right)$ is $p y=x+p^{2}$.
(iii) Find the coordinates of the point where the tangent at $(9,6)$ meets the tangent at (25, -10).
22. June 2005 qu. 6

The equation of a curve is $x y^{2}=2 x+3 y$.
(i) Show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2-y^{2}}{2 x y-3}$.
(ii) Show that the curve has no tangents which are parallel to the y-axis.
23. June 2005 qu. 7

A curve is given parametrically by the equations $\quad x=t^{2}, \quad y=\frac{1}{t}$.
(i) Find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ in terms of t, giving your answer in its simplest form.
(ii) Show that the equation of the tangent at the point $P\left(4,-\frac{1}{2}\right)$ is $x-16 y=12$.
(iii) Find the value of the parameter at the point where the tangent at P meets the curve again.

